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Abstract 

 
This study demonstrates a remarkable flexibility of advanced divertor configurations created with 
the remote poloidal field coils. The emphasis here is on the configurations with three poloidal 
field nulls in the divertor area. We are seeking the structures where all three nulls lie on the same 
separatrix, thereby creating two zones of a very strong flux expansion, as envisaged in the 
concept of H. Takase’s cusp divertor. It turns out that the set of remote coils can indeed produce a 
cusp-divertor, with additional advantages of: 1) a large stand-off distance between the divertor 
and the coils and, 2) a thorough control that these coils exert over the fine features of the 
configuration. In reference to these additional favourable properties acquired by the cusp divertor, 
the resulting configuration could be called “a super-cusp.” General geometrical features of the 
three-null configurations produced by remote coils are described. Issues on the way to practical 
applications include the need for a more sophisticated control systems and possible constraints 
related to excessively high currents in the divertor coils.  
 
1. Introduction 
 
 During the last decade, attempts to find solutions to the power exhaust problem in 
future tokamaks have led to emergence and analysis of several poloidal divertor 
configurations deviating significantly from a “standard” single-null divertor configuration 
(e.g., [1]). Among them are: a cusp divertor [2] and its close “relative” called X-divertor 
[3, 4]; Pitts divertor [5]; a snowflake [6, 7] and a cloverleaf [8] divertors. All of them are 
utilizing poloidal flux expansion; the latter two exploit also the increased number of 
divertor channels and strike points.  A desirable feature of the divertor magnetic field is a 
possibility to create it by remote coils situated sufficiently far from the divertor zone, 
behind the neutron shield and, desirably, even outside the toroidal field coils. General 
properties of the poloidal field (PF) created by distant currents impose some constraints 
on the realizable field geometry [9]. Still, as was shown experimentally in Refs. [10-13] 
for the case of a snowflake divertor, one can vary at will the divertor field structure even 
if the coils are situated far away from the divertor.  
 Here we explore an analogous issue for a cusp-like divertor and assess a variety of 
the related configurations.  
 Before proceeding to this analysis, we briefly describe the original cusp divertor, 
as presented in Ref. 2. It required producing PF nulls on each of the two branches of the 
separatrix of the standard divertor, as shown in Fig. 1 for some generic cusp divertor; for 
the original pictures with more detail, see Figs. 3, 4 in Ref. 2 and Figs. 3, 4 in Ref. 4. As 
seen from Fig.1, the divertor coils have been placed near the strike points in each divertor 
leg. As these coils are dipole-like, with the currents in the adjacent coils flowing in the 
opposite directions, their magnetic field rapidly decreases with the distance, thereby 
making their effect on the main null and the core plasma minimal. A nice verbal 
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summary of these features was presented in Ref. 4:  “This extra downstream X-point can 
be created with an extra pair of poloidal coils… Each divertor leg (inside and outside) 
needs such a pair of coils. …The distant main plasma is hardly affected because the line 
flaring happens only near the extra coils.”  
 Now we want to produce a similar configuration with the coils situated far away 
from the divertor area. Specifically, we assume that the distance from the divertor PF 
nulls to the coils is larger than the distance between the nulls. In most of the existing 
reactor designs the PF coils, including the ones that control the divertor field, are placed 
outside the radiation shield and toroidal field coils. Or, putting it differently, our approach 
doesn’t lead to the increase of the reactor size compared to reactors based on the standard 
single-null divertors of ITER type. It does not require the use of the PF coils interlinked 
with the TF coils.  
 The present study does not by any means pretend to propose “the best” solution 
for the divertor problem: there already exist several promising ideas, some of which have 
been tested experimentally. Its purpose is much more modest: to identify and characterize 
several intriguing magnetic configurations and their features that may possibly provide a 
basis for modified divertor designs. These configurations may also be used to “probe” the 
plasma properties at the plasma edge.  
 
2. Magnetic field characterization 
 
 We assume that the plasma current in the divertor area is small, so that we are 
dealing with the vacuum magnetic field. In the zone whose dimension is small compared 
to the major radius, one can neglect the toroidicity and consider the field as planar, with 
two components, Bx(x,y) and By(x,y) (the Cartesian coordinates x, y  are shown in Fig. 2). 
We choose the origin of the coordinate frame in the “main” null, the one situated at the 
boundary of the confined plasma.   
 The 2D vacuum magnetic field can be conveniently described using complex 
variables [15].  In the context of the divertor magnetic field this approach has been used 
in Refs. 8, 16. The complex variable z is introduced as z=x+iy; the presence of the 
conditions ∇⋅B = 0 , ∇×B = 0  allows one to introduce a complex function G(z)=Ψ+iΦ 
(a complex potential) and function F(z)=Bx(z)-iBy(z) related to the complex potential G 
by 
 F=-dG/dz          (1) 
With these definitions, one finds that Φ=ImG is a poloidal flux function, Bx = −∂Φ /∂y , 
By = ∂Φ /∂x , with the lines Φ (x,y)=const being the PF flux surfaces. The function Ψ is a 
scalar potential. As the conductors that are generating the magneic field in the divertor 
zone are situated far away from this zone, the functions F and G are regular functions.  
 What we would like to produce, is a configuration with three nearby nulls: the one 
on the boundary of the main plasma, and two nulls on the two branches of the separatrix 
emerging from the “main” null. In other words, we are interested in the configuration 
with three nearby nulls, of the type shown in Fig, 3 that depicts one of the configurations 
that appear as a result of our further analysis. This, in turn, means that the configuration 
will be close to the cloverleaf configuration [8], where the three nulls were merged into a 
third-order null. The trick is to find conditions under which this third-order null splits in 
the way shown in Fig. 3. An analysis presented in the present paper shows that such 
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configurations do indeed exist. We also consider a structure of the nearby configurations 
and assess requirements to the location and the currents in the divertor coils.  
 A regular function in the area of interest for us can be represented as a third-order 
polynomial of the form:  
 F =Cz(z− z1)(z− z2 )         (2) 
where z1,2 are the secondary nulls, whereas the “main” null, per our convention of the 
origin of the coordinate frame, is situated at z=0. We assume that |z|, |z1| and |z2| are all 
small compared to the plasma minor radius a and the distances to the divertor coils. There 
is no reason to retain the higher-order terms in z as, for small z, they will be subdominant 
compared to the retained terms. The constant C is determined by the currents in the 
plasma and divertor coils. We represent it as:  

 C = KBpme
iη / a3 ,        (3) 

where Bpm is the poloidal magnetic field strength at the separatrix in the midplane, and K 
is a dimensionless parameter that determine the rate of increase of the field at |z|>|z1,2|. If 
the divertor coils are situated at the distance ~a from the null, then this coefficient is of 
the order of unity. Its exact value depends on the global magnetic configuration. The 
parameter η determines the orientation of the branches of the separatrix with respect to 
the coordinate frame (see Ref. 16). In what follows, we take it equal to π / 2 ; as we show 
shortly, this corresponds to the location of the main plasma above the main null, i.e., the 
configuration looks like in Fig. 3. The orientation of the field structure in real device is 
determined by location of the PF coils. For our selection of η and for z1=z2=0, we recover 
an exact third-order null (Fig. 4) characteristic of the cloverleaf configuration of Ref. 8. 
 
3. Super-cusp configuration 
 
 We now want to deliberately distort an exact 3rd-order-null configuration of Fig. 
4, so that there would appear three nearby nulls, arranged in a special manner, like in Fig. 
3 that shows a configuration symmetric with respect to the vertical axis. We will find the 
constraints under which such symmetric configuration and similar asymmetric 
configurations can be created by the distant coils. The configuration shown in Fig. 3 is 
very similar to the original cusp divertor, but has additional attractive features: first, it 
will be created by the coils that are much further from the divertor than the distance 
between the divertor nulls; second, the configuration will produce a clean cusp geometry, 
with one first-order null near each strike point, not a more complex configuration 
produced by the nearby coils. [In particular, in the case shown in Fig. 1, additional nulls 
are lurking around: in the vicinity of each strike-point there are at least two nulls.] For 
these two reasons we suggest to call configuration of Fig. 3 “a super-cusp.” Note also that 
significant compression of the flux surfaces occurs on the way from the main null to the 
secondary nulls, similarly to what has been discussed in the cusp- and X-divertor 
proposals [2-4]. In the cusp divertor the effect was supposed to be further enhanced by 
additional coils situated between the main null and the secondary nulls.  
 For the analysis of the shape of the poloidal field flux surfaces, it is convenient to 
operate with the functions F and G divided by the coefficient KBpm / a

3 . So, the function 
F  becomes: 
 F = iz(z− z1)(z− z2 ) .        (4) 
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Performing an integration, we find the corresponding function G: 

 G = −i z
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We take the additive constant equal to zero; then, equation G(z)=0 corresponds to the 
separatrix passing through the “main” null, z=0. To obtain a configuration of the type 
shown in Fig. 3, we need to find the situation where the same separatrix passes through 
two other nulls, in other words, we need to ensure that ImG(z1) = 0; ImG(z2 ) = 0 . We 

have accounted for the fact that the additive constant in Eq. (5) is zero for the “main” 
null. These two equations then become: 
 Re z1

3 −z1 + 2z2( )"
#

$
%= 0; Re z2

3 −z2 + 2z1( )"
#

$
%= 0 .    (6)  

 The positions of the two nulls will be characterized by their distances to the main 
null, D1, D2 (both positive) and angles χ1, χ2 formed by the segments D1, D2 with the 
vertical axis (Fig. 5). With this convention, the positive signs of χ1, χ2 mean that the nulls 
are situated on the opposite sides of the vertical axis. If χ1 is positive, whereas χ2 is 
negative, the nulls are situated on the same (“left” side). The change of both signs 
corresponds simply to flipping the configuration with respect to the vertical axis. One 
more constraint on the values of χ1, χ2 is that both nulls should lie below the “main” null, 
in the lower half-space, as it is usually assumed in the divertor design. As D1 and D2 are 
positive, we have: 
 0 < χ1 < π / 2; −π / 2 < χ2 < π / 2 ;      (7a) 

 D1,D2 > 0 .         (7b) 
  Referring to Fig. 5 and the aforementioned definitions, we present the roots in the 
form: 

 
z1 = D1 −sin χ1 − icosχ1( ) = −iD1e−iχ1,
z2 = D1 sin χ2 − icosχ2( ) = −iD2e

iχ2 .
      (8) 

In this representation, Eqs. (6) become: 

 
D2 cos4χ2 = 2D1 cos χ1 −3χ2( );
D1 cos4χ1 = 2D2 cos χ2 −3χ1( ).

      (9) 

Here D1, D2>0.  For z1 and z2 satisfying Eqs. (6) all three nulls lie on the same separatrix 
an equation for which is Φ=ImG=0. Substituting Eq. (8) into Eq. (5) and using the polar 
representation of z, z = reiθ , we find this equation in the polar coordinates r, θ:  

−Φ =
r4

4
cos4θ − r

2

3
D1 sin 3θ − χ1( )+D2 sin 3θ + χ2( )#$ %&−

r2

2
D1D2 cos 2θ + χ2 − χ1( ) (10) 

 We first consider the case of symmetric location of secondary nulls, D1=D2=D, 
χ1= χ2 =χ (this is the case shown in Fig. 3). In this case equations (9) both lead to the 
same equation for the angle χ: 
 cos4χ − 2cos2χ = 0 ,        (11) 
this yielding the following expression for cosχ: 
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 cosχ = 3− 3
2

≈ 0.56302 ,        (11)     

or χ=0.97276. With that, condition Φ=0 leads to the following equation for the separatrix 
(see Eq. (10)): 

 r4

4
cos4θ − 2r

3D
3
sin3θ cosχ − r

2D2

2
cos2θ = 0     (12) 

The result is shown in Fig. 3. By putting divertor plates near the secondary nulls, one 
reduces the heat flux on the plates by strong flaring of the magnetic field. The distance D 
is determined by the divertor coil configuration and the currents in these coils. We will 
return to this relation later.  
 We now show several examples of the asymmetric nulls, the ones that are 
described by Eqs. (9). These equations cover a broad variety of the three-null super-cusp 
(and related) configurations. Taking as a parameter an angle χ1, we can find from Eq. (9) 
the corresponding values of χ2 and the ratios D2/D1 and thereby get a family of 
configurations characterized by the parameter χ1.  As mentioned, distances D1, D2 are 
determined by the position of the divertor coils; for now, looking only for the shapes of 
these configurations, we normalize the distances to D1, making thereby D1=1. 
 Eliminating D2 from Eqs. (9), one finds relation between χ1 and χ2: 

 

cos4χ1( ) cos4χ2( ) = 4cos(χ2 −3χ1)cos(χ1 −3χ2 )

    

(13) 
In the domain defined by Eq. (7a) this equation describes several branches of solutions 
illustrated by Fig. 6.  As mentioned, we are not interested in the secondary nulls lying 
above the primary null. Also, there is no need to consider negative χ1 - these 
configurations are obtained simply by flipping a configuration with χ1>0 around the 
vertical axis – hence the conditions of Eq. (7a). 
 The second of Eqs. (9) allows us to find D2 in the form: 

 D2 =
cos4χ1

2cos χ2 −3χ1( )
.        (14) 

As D2 is positive (Eq. 7b), we have to consider solutions of Eq. (13) only in the domain  
where the right-hand side of Eq. (14) is positive; these domains are highlighted by a light 
shading in Fig. 6.  
 The solution describing the symmetric null of Fig. 3 corresponds to point 1 in Fig. 
6. If one moves along the branch where this solution lies, the ratio D2/D1  increases in one 
direction (smaller χ1 ) and decreases in the opposite direction (larger χ1). An example is 
shown in Fig. 7 a  and corresponds to point 2. One of the two nulls is situated now 
significantly farther from the main plasma than the other. The configuration can be 
flipped around the vertical axis, if needed. Having different lengths of the divertor legs 
provides additional flexibility to the divertor design.  
 In the configuration of Fig. 7b (point 3 in Fig. 6), one of the secondary nulls 
merges with the primary null, thereby creating a second-order null (a snowflake) at the 
boundary of the confinement zone, with a first-order null situated nearby. Whether this 
peculiar configuration has an additional potential for the divertor improvement, remains 
to be seen. 
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4. Other related configurations 
 
 Equations (9) have also solutions corresponding to configurations significantly 
different from the super-cusp. Among them there is a configuration of Fig. 8 a, where all 
three nulls lie on the boundary of the confinement zone (it corresponds to point 4 in Fig. 
6). It may possess some interesting properties in terms of the core confinement and in 
terms of the divertor physics. For the latter, the presence of a long contact zone between 
the core and the private flux can be important. The present paper is, however, focused on 
the super-cusp geometry, and we will not dwell on this alternative.  
 Configuration shown in Fig. 8b (point 5 in Fig. 6) has two nulls lying on the same 
flux-surface as the “main” null, but not connected to the scrape-off layer. So, they cannot 
serve in the same way as a cusp configuration of Fig. 3.  
 Although these configurations are indeed very different from the super-cusp of 
Fig. 3 or of Fig. 7a, they belong to the same family of the magnetic configurations and 
can be transformed to the super-cusp by a mere rotation in the (x,y) plane. The apparent 
difference is caused simply by the identification of the confinement zone, whereas the 
magnetic structures are essentially the same. The readers can easily imagine transforming 
the configuration of Fig. 8a by flipping it around the horizontal axis and shifting the 
origin. Still, with respect to divertor properties these configurations are very different. 
 Each of the three nulls of the three-null configuration is a first-order null. The 
magnetic field  in the immediate vicinity of such a null grows linearly with the distance 
from the null. Consider, for example, the vicinity of the “main” null. For |z|<<|z1|, |z2|, Eq. 
(2) yields: F ≈ Czz1z2 , or Bp =|C | rD1D2 , where r is the distance to the main null. Note 
that the absolute value of the poloidal field near the null does not depend upon direction, 
so that the derivative of Bp over the distance is simply a constant: 
 !Bp = K(Bpm / a

3)D1D2         (15)  
where we used Eq. (3) for C. This derivative characterizes the “flatness” of the poloidal 
field near the null and is important for the evaluation of the zone of high poloidal beta in 
the vicinity of the null.  
 Remarkably, the flatness of the field in the other two nulls is the same as that 
defined by Eq. (15) for the first null. This is clear from the inspection of Eq. (2). This fact 
emphasizes that the nulls are not independent from each other: they belong to the same 
configuration and are “conversing” with each other. This is another significant difference 
from the original cusp divertor.  
 The equal flatness of the poloidal field in all three nulls can also be used to test 
the approximation that the nulls are close to each other and are situated far away from the 
sources of the field - an issue mentioned at the end of Introduction. 
 
5. Geometry of the global field 
  
 In the previous sections we looked at the properties of the magnetic field in the 
zone situated far away from the currents generating this field. Now we consider the 
whole magnetic configuration that would include the plasma current and the current in 
the PF coils. The solution of the plasma equilibrium problem and determination of the 
shape of the separatrix in this situation is generally provided by the use of sophisticated 
equilibrium codes. On the other hand, some preliminary insights into geometry of the 
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resulting system can be developed within a much simpler model where the plasma and 
divertor currents are represented as a set of current-carrying wires. At the present stage of 
characterization of the super-cusp configuration we will limit ourselves to the wire 
model. With that, we will consider a relatively easily manageable symmetric situation.  
 The conductor imitating the plasma current will be situated at the distance a from 
the “main” null.  Unlike a second-order null divertor [6], we need at least three divertor 
coils in order to control three PF nulls. We place these coils in the configuration used in 
the analysis of the cloverleaf divertor [8]: two conductors are placed symmetrically with 
respect to the vertical axis, whereas the third conductor lies on the vertical axis (Fig. 9). 
The quantities a, p, q and s shown in the figure are all positive. Adding more conductors 
would lead to a greater flexibility of configurations and will also allow one to reduce the 
currents per conductor, but for now we stay with the simplest configuration. 
 By adjusting the currents in the three conductors, one can create an exact third-
order null at the origin, as was shown in Ref. 8. Ref .8 contained also characterization of 
the deviations from this state caused by the imposition of a uniform magnetic field. The 
arising magnetic configurations contained three nulls forming an equilateral triangle and 
never lying on the same separatrix. To generate a super-cusp configuration, one needs to 
adjust the currents in the coils in a different way as considered below.  
 The complex potential for the set of coils shown in Fig. 9 is 

 .  (16) 

The factor “i” makes the direction of the plasma field consistent with the current 
direction: we assume that the plasma current flows into the plane of the picture. The coil 
currents also flow in this direction. The currents are all positive. The current in each of 
the two symmetric conductors is I1; the current in the conductor lying in the symmetry 
plane is I2. The total current in the divertor coils is 2I1 + I2 . 
 The field function is: 

 F = −
2iI p
c

1
z− ia

+
!I1

z+ p+ iq
+

!I1
z− p+ iq

+
!I2

z+ is
"

#
$

%

&
' ,     (17) 

where !I1,2 = I1,2 / I p are the coil currents normalized to the plasma current. As before, we 
choose the “main” null to be located in the origin. This immediately yields the following 
relation between the coil currents: 

 !I2 =
s
a
1− 2 !I1aq

p2 + q2
"

#
$

%

&
' .        (18) 

 As is clear from Eq. (17), the condition F=0 that determines the location of the 
three field nulls is a cubic equation in z. With condition (18) satisfied, one of the three 
nulls lies at z=0. Then, the positions of the other two nulls are determined from the 
quadratic equation that follows from Eq. (17) for !I2 as in Eq. (18):  
 z2 + iQ1z+Q2 = 0 ,        (19) 
where  

G =
2i
c
I p ln(z− ia)+ I1 ln(z+ p+ iq)+ I1 ln(z− p+ iq)+ I2 ln(z+ is)"# $%
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    (20) 

Here the parameters p, q and s are normalized to a (a distance of the plasma “wire” from 
the origin).  
 If one makes both Q1 and Q2 zero, one creates an exact third-order null of Ref. 8. 
We, however, are now interested in a different situation, where the two secondary nulls 
would be separated from the primary null by some finite distance D and, at the same 
time, would be lying on the same separatrix as the main null, in the arrangement of Fig. 
3. One can check that, by the order of magnitude, Q1~D, Q2~D2.  
 As Q1,2  are real, the nulls of Eq. (19) are symmetric with respect to the vertical 
axis. Therefore, the condition that they lie on the same separatrix as the main null 
imposes one constraint on the parameters of the system, namely that ImG(0)=ImG(z1), 
where z1 is, say, a “left” of the two secondary nulls (Eq. (19). So, choosing the 
geometrical parameters p, q, s, one can find a current I1 for which the desired 
configuration would form. An example is shown in Fig. 9 where the global separatrix is 
shown, with the super-cusp geometry formed near the “main” null.  
 One can make the following observations regarding these results: 1) The total 
current in the diveror coils is 0.98Ip. 2) The distance from the main null to the 
secondary nulls can be substantial, up to a half of the minor radius (which is for this 
configuration ~ 0.5a), thereby allowing for significant volume for deployment of the 
divertor components. With that, it is still within the applicability limit of a three-null 
model, with the distances to all the conductors being large compared to D.  
 Denoting by ΔI1 the difference between the current I1

*  that corresponds to the 
third-order null of Ref. 7 and the current I1

(cusp) corresponding to the super-cusp 
configurations shown in Fig. 9, one finds that the distance D between the secondary nulls 
and the primary null scales as D / p ~ ΔI1 / I1

* . So, for the case of Fig. 9 the current has 
to be changed by a few percent compared to the current of an exact third-order null. The 
distance from the main null to the two secondary nulls is determined by the proximity of 
the currents to those that create an exact cloverleaf configuration. In order to have enough 
space to place the divertor targets in a way compatible with the presence of the two nulls, 
an overall size of the divertor would probably have to be (1.5 – 2)D. In the example 
shown in Fig. 9, this would be ~ of order of 0.3 – 0.4 of the minor radius, i.e., comparable 
to the size used in the ITER design, e.g., Ref. 17. If needed, the parameter D can be 
reduced by adjusting the currents in the divertor coils.  
 By deliberately making the current lower or higher than the value needed for the 
“perfect” super-cusp, one finds the situations shown in Fig. 10, with the secondary 
separatrices split from the primary one. Similarly to a snowflake divertor, there are two 
different cases here: the secondary separatrix can either enclose the primary one as in Fig. 

2I1 + I2
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10a or be isolated from the primary one as in Fig. 10b. By the analogy to the snowflake 
divertor, one can call the first (the second) case super-cusp-minus (super-cusp-plus).  
 In the case of super-cusp-minus one can “activate” four divertor legs without 
relying on plasma convection in the weak poloidal field zone [18]. Indeed, by choosing 
the current so that the secondary separatrix would go through a middle of the scrape-off-
layer, one would activate simultaneously the two outermost and two innermost divertor 
legs (four total), as seen from Fig. 10a. This mechanism of the flux sharing has been 
discussed in relation to the snowflake divertor in Ref. 9 and observed experimentally with 
the snowflake divertor [10-13]. 
 Using divertor plates forming a small angle with the plasma flow, one recovers a 
conventional divertor configuration, but with four (instead of two) divertor legs. Note that 
if the magnetic field is small in a sufficiently large area near the main null, then a plasma 
convection can appear that would lead to the broadening of the plasma flow in each of the 
divertor legs, as discussed in Ref. 18.  
 
6. Discussion 
 
 In this article we explored a possibility of creating the cusp geometry similar to 
that of Ref. 2 by a set of remote coils. It turned out that this is indeed possible: by a 
proper adjustments of the current one can create configurations where additional nulls are 
produced downstream from the main X-point on both outgoing branches of the 
separatrix. This allows exploring the original idea of Ref. 2 and Refs. 3, 4 of reducing the 
divertor heat flux by a strong flaring of the magnetic field lines in both strike-points of a 
standard divertor, without need for the coils situated near the targets.   
 Our approach is the same as that used before for the snowflake divertor: a 
representation of the field by a power series of the coordinates. If the secondary nulls are 
situated very close to the primary one, we recover a concept of a cloverleaf (3rd order 
null) divertor of Ref. 8. If, however, the distance increases, the system would act as 
envisaged in Refs. 2-4, with the main effects on divertor operation coming from the flux 
expansion. The transition from one mode to another can probably be studied with the 
same set of coils. The weak poloidal field at the divertor targets and the corresponding 
shallow intersection angle of the total magnetic field vector with a target may also 
provide conditions for the studies of specific sheath-driven instabilities strongly affected 
by this intersection angle [19, 20]. No analyses of these effects are available at present for 
the specific situation of a cusp or super-cusp divertors.  
 The control of the new configuration may be more complex than for the standard 
X-point or a snowflake configuration, since the control system has now to juggle with 
three nulls and keep them in the assigned positions. On the other hand, there is 
encouraging progress in development of advanced control algorithms for the two-null 
configurations (Ref. 21) and extrapolations to three-null systems may become possible.  
 Another issue with divertor performance may be associated with the constraints 
on the minimum angle between the magnetic field line and diveror plate at the strike 
point: at very small angle (that can be reached in the cusp divertor) imperfect flatness of 
the tiles may create “hot spots” creating damage to the tiles. It was argued in Ref. 22 that 
this constraint may actually become much less severe in the detached regimes. 
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 Finally, concerns are sometime expressed regarding the divertor coil requirements 
associated with relatively high divertor currents needed for the multi-null systems 
compared to the single-null divertors. The solution here would probably come from 
increased number of coils and optimization of their positions, as has been done for the 
snowflake divertor, e.g., in Refs. 23, 24. Increased number of the coils in the divertor area 
provides also more flexibility in controlling the magnetic field structure.  
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Fig. 1 A generic cusp divertor. The currents in the neighbouring coils flow in the opposite 
direction, thereby minimizing the impact of these coils on the core plasma. In Ref. 2, 
additional coils (not shown on our schematic) that would squeeze the poloidal flux 
surfaces above the strike points, have been considered, but the concept works nicely 
without them. Reproduced from Ref. 14 with permission of the AIP Publishing, all rights 
reserved.  
 

 
 

Fig. 2 Coordinate frame used in our analysis. The origin coincides with the poloidal field 
null lying on the main separatrix.  
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Fig. 3 A super-cusp divertor. The magnetic configuration is created by the coils situated 
at a significant distance from the divertor area. Fat black line represents the separatrix 
that passes through all three nulls. In the two lower nulls a cusp configuration is created. 
The confinement zone is indicated by a set of red flux surfaces, whereas the scrape-off 
layer is indicated by the yellow flux surfaces. In agreement with the original idea of Ref. 
2 (see also Refs 3, 4), there is a significant flux expansion in the area of the secondary 
nulls. In this case, the flux spreading occurs due to purely geometrical factors, not due to 
enhanced transport in the area of the weak field as in the models with very closely spaced 
nulls [17]. Shown in purple are two of many conceptually possible position of the 
divertor plates.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 4 An exact third-order null of the poloidal field (Ref. 8). Eight branches of the 
separatrix are present with the confinement zone identified with the upper central octant. 
The presence of an apparent hole near the origin is a result of insufficient resolutionof the 
printer.  
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Fig. 5 The two secondary nulls of the super-cusp configuration. Note the sign convention 
for the angles χ1,2: both are positive when the corresponding null moves away from the 
vertical symmetry plane.  
 

  
 
Fig. 6 The solutions of Eq. (13), red lines. Lightly shaded area correspond to the positive 
r.h.s. of Eq. (14) – only these areas produce solutions satisfying Eqs. (7). The dots 
identify locations of several particular structures shown in the subsequent figures.  
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Fig. 7 Some of the asymmetric super-cusp configurations: a) One divertor leg is much 
longer than the other. Corresponds to point 2 in Fig. 6 (χ1=0.938, χ2=1,0484).  Can be 
flipped around the vertical axis; b) configuration with one of the secondary nulls merging 
with the primary null, thereby forming a snowflake configuration. (χ1=π/8, χ2=0.6545).   
A secondary null stands at some distance. Corresponds to point 3 in Fig. 6.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8 Some three-null configurations that do not possess super-cusp features. The first 
corresponds to point 4 in Fig. 6 (χ1=π/2, χ2=-09727), the second, to point 5 (χ1=.5632, 
χ2=-0.1110). 
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Fig. 9. Positions of conductors in the four-wire model and the global shape of the 
corresponding super-cusp configuration. Parameters of this configuration: p=0.5a, 
q=0.2a, s=0.372a, I1 / I p = 0.424 , I2 / I p = 0.132 , D=0.098a. Note that for the geometry 
presented in this figure the minor radius is ~0.5a. 
 
 

              
 
Fig. 10 The divertor area of the previous configuration but with the divertor coil current 
2% lower (left panel) and 2% higher (right panel) from the exact super-cusp. In the first 
configuration two additional strike points are activated, similarly to the activation of an 
additional strike points in the snowflake-minus divertor. Shown in yellow are scrape-off 
layer flux surfaces situated inside and outside the secondary separatrix. They are split 
between four divertor legs. This effect is absent for the right panel. 
 

 


